1 line
16 KiB
Plaintext
1 line
16 KiB
Plaintext
|
{"version":3,"file":"arc-1bd4335b.js","sources":["../../../node_modules/.pnpm/d3-shape@3.1.0/node_modules/d3-shape/src/arc.js"],"sourcesContent":["import {path} from \"d3-path\";\nimport constant from \"./constant.js\";\nimport {abs, acos, asin, atan2, cos, epsilon, halfPi, max, min, pi, sin, sqrt, tau} from \"./math.js\";\n\nfunction arcInnerRadius(d) {\n return d.innerRadius;\n}\n\nfunction arcOuterRadius(d) {\n return d.outerRadius;\n}\n\nfunction arcStartAngle(d) {\n return d.startAngle;\n}\n\nfunction arcEndAngle(d) {\n return d.endAngle;\n}\n\nfunction arcPadAngle(d) {\n return d && d.padAngle; // Note: optional!\n}\n\nfunction intersect(x0, y0, x1, y1, x2, y2, x3, y3) {\n var x10 = x1 - x0, y10 = y1 - y0,\n x32 = x3 - x2, y32 = y3 - y2,\n t = y32 * x10 - x32 * y10;\n if (t * t < epsilon) return;\n t = (x32 * (y0 - y2) - y32 * (x0 - x2)) / t;\n return [x0 + t * x10, y0 + t * y10];\n}\n\n// Compute perpendicular offset line of length rc.\n// http://mathworld.wolfram.com/Circle-LineIntersection.html\nfunction cornerTangents(x0, y0, x1, y1, r1, rc, cw) {\n var x01 = x0 - x1,\n y01 = y0 - y1,\n lo = (cw ? rc : -rc) / sqrt(x01 * x01 + y01 * y01),\n ox = lo * y01,\n oy = -lo * x01,\n x11 = x0 + ox,\n y11 = y0 + oy,\n x10 = x1 + ox,\n y10 = y1 + oy,\n x00 = (x11 + x10) / 2,\n y00 = (y11 + y10) / 2,\n dx = x10 - x11,\n dy = y10 - y11,\n d2 = dx * dx + dy * dy,\n r = r1 - rc,\n D = x11 * y10 - x10 * y11,\n d = (dy < 0 ? -1 : 1) * sqrt(max(0, r * r * d2 - D * D)),\n cx0 = (D * dy - dx * d) / d2,\n cy0 = (-D * dx - dy * d) / d2,\n cx1 = (D * dy + dx * d) / d2,\n cy1 = (-D * dx + dy * d) / d2,\n dx0 = cx0 - x00,\n dy0 = cy0 - y00,\n dx1 = cx1 - x00,\n dy1 = cy1 - y00;\n\n // Pick the closer of the two intersection points.\n // TODO Is there a faster way to determine which intersection to use?\n if (dx0 * dx0 + dy0 * dy0 > dx1 * dx1 + dy1 * dy1) cx0 = cx1, cy0 = cy1;\n\n return {\n cx: cx0,\n cy: cy0,\n x01: -ox,\n y01: -oy,\n x11: cx0 * (r1 / r - 1),\n y11: cy0 * (r1 / r - 1)\n };\n}\n\nexport default function() {\n var innerRadius = arcInnerRadius,\n outerRadius = arcOuterRadius,\n cornerRadius = constant(0),\n padRadius = null,\n startAngle = arcStartAngle,\n endAngle = arcEndAngle,\n padAngle = arcPadAngle,\n context = null;\n\n function arc() {\n var buffer,\n r,\n r0 = +innerRadius.apply(this, arguments),\n r1 = +outerRadius.apply(this, arguments),\n a0 = startAngle.apply(this, arguments) - halfPi,\n a1 = endAngle.apply(this, arguments) - halfPi,\n da = abs(a1 - a0),\n cw = a1 > a0;\n\n if (!context) context = buffer = path();\n\n // Ensure that the outer radius is always larger than the inner radius.\n if (r1 < r0) r = r1, r1 = r0, r0 = r;\n\n // Is it a point?\n if (!(r1 > epsilon)) context.moveTo(0, 0);\n\n // Or is it a circle or annulus?\n else if (da > tau - epsilon) {\n context.moveTo(r1 * cos(a0), r1 * sin(a0));\n context.arc(0, 0, r1, a0, a1, !cw);\n if (r0 > epsilon) {\n context.moveTo(r0 * cos(a1), r0 * sin(a1));\n context.arc(0, 0, r0, a1, a0, cw);\n }\n }\n\n // Or is it a circular or annular sector?\n else {\n var a01 = a0,\n a11 = a1,\n a00 = a0,\n a10 = a1,\n da0 = da,\n da1 = da,\n ap = padAngle.apply(this, arguments) / 2,\n rp = (ap > epsilon) && (padRadius ? +padRadius.apply(this, arguments) : sqrt(r0 * r0 + r1 * r1)),\n rc = min(abs(r1 - r0) / 2, +cornerRadius.apply(this, arguments)),\n rc0 = rc,\n rc1 = rc,\n t0,\n t1;\n\n // Apply padding? Note that since r1 ≥ r0, da1 ≥ da0.\n if (rp > epsilon) {\n var p0 = asin(rp / r0 * sin(ap)),\n p1 = asin(rp / r1 * sin(ap));\n if ((da0 -= p0 * 2) > epsilon) p0 *= (cw ? 1 : -1), a00 += p0, a10 -= p0;\n
|