cullmann.io/themes/blowfish/assets/lib/mermaid/constant-2fe7eae5.js.map

1 line
8.1 KiB
Plaintext
Raw Normal View History

{"version":3,"file":"constant-2fe7eae5.js","sources":["../../../node_modules/.pnpm/d3-path@3.0.1/node_modules/d3-path/src/path.js","../../../node_modules/.pnpm/d3-shape@3.1.0/node_modules/d3-shape/src/constant.js"],"sourcesContent":["const pi = Math.PI,\n tau = 2 * pi,\n epsilon = 1e-6,\n tauEpsilon = tau - epsilon;\n\nfunction Path() {\n this._x0 = this._y0 = // start of current subpath\n this._x1 = this._y1 = null; // end of current subpath\n this._ = \"\";\n}\n\nfunction path() {\n return new Path;\n}\n\nPath.prototype = path.prototype = {\n constructor: Path,\n moveTo: function(x, y) {\n this._ += \"M\" + (this._x0 = this._x1 = +x) + \",\" + (this._y0 = this._y1 = +y);\n },\n closePath: function() {\n if (this._x1 !== null) {\n this._x1 = this._x0, this._y1 = this._y0;\n this._ += \"Z\";\n }\n },\n lineTo: function(x, y) {\n this._ += \"L\" + (this._x1 = +x) + \",\" + (this._y1 = +y);\n },\n quadraticCurveTo: function(x1, y1, x, y) {\n this._ += \"Q\" + (+x1) + \",\" + (+y1) + \",\" + (this._x1 = +x) + \",\" + (this._y1 = +y);\n },\n bezierCurveTo: function(x1, y1, x2, y2, x, y) {\n this._ += \"C\" + (+x1) + \",\" + (+y1) + \",\" + (+x2) + \",\" + (+y2) + \",\" + (this._x1 = +x) + \",\" + (this._y1 = +y);\n },\n arcTo: function(x1, y1, x2, y2, r) {\n x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;\n var x0 = this._x1,\n y0 = this._y1,\n x21 = x2 - x1,\n y21 = y2 - y1,\n x01 = x0 - x1,\n y01 = y0 - y1,\n l01_2 = x01 * x01 + y01 * y01;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(\"negative radius: \" + r);\n\n // Is this path empty? Move to (x1,y1).\n if (this._x1 === null) {\n this._ += \"M\" + (this._x1 = x1) + \",\" + (this._y1 = y1);\n }\n\n // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.\n else if (!(l01_2 > epsilon));\n\n // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?\n // Equivalently, is (x1,y1) coincident with (x2,y2)?\n // Or, is the radius zero? Line to (x1,y1).\n else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {\n this._ += \"L\" + (this._x1 = x1) + \",\" + (this._y1 = y1);\n }\n\n // Otherwise, draw an arc!\n else {\n var x20 = x2 - x0,\n y20 = y2 - y0,\n l21_2 = x21 * x21 + y21 * y21,\n l20_2 = x20 * x20 + y20 * y20,\n l21 = Math.sqrt(l21_2),\n l01 = Math.sqrt(l01_2),\n l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),\n t01 = l / l01,\n t21 = l / l21;\n\n // If the start tangent is not coincident with (x0,y0), line to.\n if (Math.abs(t01 - 1) > epsilon) {\n this._ += \"L\" + (x1 + t01 * x01) + \",\" + (y1 + t01 * y01);\n }\n\n this._ += \"A\" + r + \",\" + r + \",0,0,\" + (+(y01 * x20 > x01 * y20)) + \",\" + (this._x1 = x1 + t21 * x21) + \",\" + (this._y1 = y1 + t21 * y21);\n }\n },\n arc: function(x, y, r, a0, a1, ccw) {\n x = +x, y = +y, r = +r, ccw = !!ccw;\n var dx = r * Math.cos(a0),\n dy = r * Math.sin(a0),\n x0 = x + dx,\n y0 = y + dy,\n cw = 1 ^ ccw,\n da = ccw ? a0 - a1 : a1 - a0;\n\n // Is the radius negative? Error.\n if (r < 0) throw new Error(\"negative radius: \" + r);\n\n // Is this path empty? Move to (x0,y0).\n if (this._x1 === null) {\n this._ += \"M\" + x0 + \",\" + y0;\n }\n\n // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).\n else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {\n this._ += \"L\" + x0 + \",\" + y0;\n }\n\n // Is this arc empty? Were done.\n if (!r) return;\n\n // Does the angle go the wrong way? Flip the direction.\n if (da < 0) da = da % tau + tau;\n\n // Is this a complete circle? Draw two arcs to complete the circle.\n if (da > tauEpsilon) {\n this._ += \"A\" + r + \",\" + r + \",0,1,\" + cw + \",\" + (x - dx) + \",\" + (y - dy) + \"A\" + r + \",\" + r + \",0,1,\" + cw + \",