cullmann.io/themes/blowfish/assets/lib/mermaid/layout-6685625a.js

2314 lines
63 KiB
JavaScript

import { a as isSymbol, b as baseFlatten, c as baseClone, d as baseIteratee, k as keys, e as baseFindIndex, g as baseEach, j as arrayMap, l as castFunction, m as baseForOwn, n as castPath, t as toKey, o as baseGet, p as hasIn, q as toString, f as forEach, G as Graph, h as has, i as isUndefined, r as filter, v as values, s as reduce } from "./graph-af3d5df6.js";
import { a8 as isObject, a9 as setToString, aa as overRest, ab as root, ac as baseRest, ad as isIterateeCall, ae as keysIn, af as eq, ag as isArrayLike, ah as isArray, ai as baseFor, aj as baseAssignValue, ak as identity, al as isIndex, am as assignValue, an as baseUnary, ao as constant, ap as merge } from "./mermaid-c5809711.js";
var reWhitespace = /\s/;
function trimmedEndIndex(string) {
var index = string.length;
while (index-- && reWhitespace.test(string.charAt(index))) {
}
return index;
}
var reTrimStart = /^\s+/;
function baseTrim(string) {
return string ? string.slice(0, trimmedEndIndex(string) + 1).replace(reTrimStart, "") : string;
}
var NAN = 0 / 0;
var reIsBadHex = /^[-+]0x[0-9a-f]+$/i;
var reIsBinary = /^0b[01]+$/i;
var reIsOctal = /^0o[0-7]+$/i;
var freeParseInt = parseInt;
function toNumber(value) {
if (typeof value == "number") {
return value;
}
if (isSymbol(value)) {
return NAN;
}
if (isObject(value)) {
var other = typeof value.valueOf == "function" ? value.valueOf() : value;
value = isObject(other) ? other + "" : other;
}
if (typeof value != "string") {
return value === 0 ? value : +value;
}
value = baseTrim(value);
var isBinary = reIsBinary.test(value);
return isBinary || reIsOctal.test(value) ? freeParseInt(value.slice(2), isBinary ? 2 : 8) : reIsBadHex.test(value) ? NAN : +value;
}
var INFINITY = 1 / 0, MAX_INTEGER = 17976931348623157e292;
function toFinite(value) {
if (!value) {
return value === 0 ? value : 0;
}
value = toNumber(value);
if (value === INFINITY || value === -INFINITY) {
var sign = value < 0 ? -1 : 1;
return sign * MAX_INTEGER;
}
return value === value ? value : 0;
}
function toInteger(value) {
var result = toFinite(value), remainder = result % 1;
return result === result ? remainder ? result - remainder : result : 0;
}
function flatten(array) {
var length = array == null ? 0 : array.length;
return length ? baseFlatten(array, 1) : [];
}
function flatRest(func) {
return setToString(overRest(func, void 0, flatten), func + "");
}
var CLONE_DEEP_FLAG = 1, CLONE_SYMBOLS_FLAG = 4;
function cloneDeep(value) {
return baseClone(value, CLONE_DEEP_FLAG | CLONE_SYMBOLS_FLAG);
}
var now = function() {
return root.Date.now();
};
const now$1 = now;
var objectProto = Object.prototype;
var hasOwnProperty = objectProto.hasOwnProperty;
var defaults = baseRest(function(object, sources) {
object = Object(object);
var index = -1;
var length = sources.length;
var guard = length > 2 ? sources[2] : void 0;
if (guard && isIterateeCall(sources[0], sources[1], guard)) {
length = 1;
}
while (++index < length) {
var source = sources[index];
var props = keysIn(source);
var propsIndex = -1;
var propsLength = props.length;
while (++propsIndex < propsLength) {
var key = props[propsIndex];
var value = object[key];
if (value === void 0 || eq(value, objectProto[key]) && !hasOwnProperty.call(object, key)) {
object[key] = source[key];
}
}
}
return object;
});
const defaults$1 = defaults;
function last(array) {
var length = array == null ? 0 : array.length;
return length ? array[length - 1] : void 0;
}
function createFind(findIndexFunc) {
return function(collection, predicate, fromIndex) {
var iterable = Object(collection);
if (!isArrayLike(collection)) {
var iteratee = baseIteratee(predicate);
collection = keys(collection);
predicate = function(key) {
return iteratee(iterable[key], key, iterable);
};
}
var index = findIndexFunc(collection, predicate, fromIndex);
return index > -1 ? iterable[iteratee ? collection[index] : index] : void 0;
};
}
var nativeMax$1 = Math.max;
function findIndex(array, predicate, fromIndex) {
var length = array == null ? 0 : array.length;
if (!length) {
return -1;
}
var index = fromIndex == null ? 0 : toInteger(fromIndex);
if (index < 0) {
index = nativeMax$1(length + index, 0);
}
return baseFindIndex(array, baseIteratee(predicate), index);
}
var find = createFind(findIndex);
const find$1 = find;
function baseMap(collection, iteratee) {
var index = -1, result = isArrayLike(collection) ? Array(collection.length) : [];
baseEach(collection, function(value, key, collection2) {
result[++index] = iteratee(value, key, collection2);
});
return result;
}
function map(collection, iteratee) {
var func = isArray(collection) ? arrayMap : baseMap;
return func(collection, baseIteratee(iteratee));
}
function forIn(object, iteratee) {
return object == null ? object : baseFor(object, castFunction(iteratee), keysIn);
}
function forOwn(object, iteratee) {
return object && baseForOwn(object, castFunction(iteratee));
}
function baseGt(value, other) {
return value > other;
}
function baseLt(value, other) {
return value < other;
}
function mapValues(object, iteratee) {
var result = {};
iteratee = baseIteratee(iteratee);
baseForOwn(object, function(value, key, object2) {
baseAssignValue(result, key, iteratee(value, key, object2));
});
return result;
}
function baseExtremum(array, iteratee, comparator) {
var index = -1, length = array.length;
while (++index < length) {
var value = array[index], current = iteratee(value);
if (current != null && (computed === void 0 ? current === current && !isSymbol(current) : comparator(current, computed))) {
var computed = current, result = value;
}
}
return result;
}
function max(array) {
return array && array.length ? baseExtremum(array, identity, baseGt) : void 0;
}
function min(array) {
return array && array.length ? baseExtremum(array, identity, baseLt) : void 0;
}
function minBy(array, iteratee) {
return array && array.length ? baseExtremum(array, baseIteratee(iteratee), baseLt) : void 0;
}
function baseSet(object, path, value, customizer) {
if (!isObject(object)) {
return object;
}
path = castPath(path, object);
var index = -1, length = path.length, lastIndex = length - 1, nested = object;
while (nested != null && ++index < length) {
var key = toKey(path[index]), newValue = value;
if (key === "__proto__" || key === "constructor" || key === "prototype") {
return object;
}
if (index != lastIndex) {
var objValue = nested[key];
newValue = customizer ? customizer(objValue, key, nested) : void 0;
if (newValue === void 0) {
newValue = isObject(objValue) ? objValue : isIndex(path[index + 1]) ? [] : {};
}
}
assignValue(nested, key, newValue);
nested = nested[key];
}
return object;
}
function basePickBy(object, paths, predicate) {
var index = -1, length = paths.length, result = {};
while (++index < length) {
var path = paths[index], value = baseGet(object, path);
if (predicate(value, path)) {
baseSet(result, castPath(path, object), value);
}
}
return result;
}
function baseSortBy(array, comparer) {
var length = array.length;
array.sort(comparer);
while (length--) {
array[length] = array[length].value;
}
return array;
}
function compareAscending(value, other) {
if (value !== other) {
var valIsDefined = value !== void 0, valIsNull = value === null, valIsReflexive = value === value, valIsSymbol = isSymbol(value);
var othIsDefined = other !== void 0, othIsNull = other === null, othIsReflexive = other === other, othIsSymbol = isSymbol(other);
if (!othIsNull && !othIsSymbol && !valIsSymbol && value > other || valIsSymbol && othIsDefined && othIsReflexive && !othIsNull && !othIsSymbol || valIsNull && othIsDefined && othIsReflexive || !valIsDefined && othIsReflexive || !valIsReflexive) {
return 1;
}
if (!valIsNull && !valIsSymbol && !othIsSymbol && value < other || othIsSymbol && valIsDefined && valIsReflexive && !valIsNull && !valIsSymbol || othIsNull && valIsDefined && valIsReflexive || !othIsDefined && valIsReflexive || !othIsReflexive) {
return -1;
}
}
return 0;
}
function compareMultiple(object, other, orders) {
var index = -1, objCriteria = object.criteria, othCriteria = other.criteria, length = objCriteria.length, ordersLength = orders.length;
while (++index < length) {
var result = compareAscending(objCriteria[index], othCriteria[index]);
if (result) {
if (index >= ordersLength) {
return result;
}
var order2 = orders[index];
return result * (order2 == "desc" ? -1 : 1);
}
}
return object.index - other.index;
}
function baseOrderBy(collection, iteratees, orders) {
if (iteratees.length) {
iteratees = arrayMap(iteratees, function(iteratee) {
if (isArray(iteratee)) {
return function(value) {
return baseGet(value, iteratee.length === 1 ? iteratee[0] : iteratee);
};
}
return iteratee;
});
} else {
iteratees = [identity];
}
var index = -1;
iteratees = arrayMap(iteratees, baseUnary(baseIteratee));
var result = baseMap(collection, function(value, key, collection2) {
var criteria = arrayMap(iteratees, function(iteratee) {
return iteratee(value);
});
return { "criteria": criteria, "index": ++index, "value": value };
});
return baseSortBy(result, function(object, other) {
return compareMultiple(object, other, orders);
});
}
function basePick(object, paths) {
return basePickBy(object, paths, function(value, path) {
return hasIn(object, path);
});
}
var pick = flatRest(function(object, paths) {
return object == null ? {} : basePick(object, paths);
});
const pick$1 = pick;
var nativeCeil = Math.ceil, nativeMax = Math.max;
function baseRange(start, end, step, fromRight) {
var index = -1, length = nativeMax(nativeCeil((end - start) / (step || 1)), 0), result = Array(length);
while (length--) {
result[fromRight ? length : ++index] = start;
start += step;
}
return result;
}
function createRange(fromRight) {
return function(start, end, step) {
if (step && typeof step != "number" && isIterateeCall(start, end, step)) {
end = step = void 0;
}
start = toFinite(start);
if (end === void 0) {
end = start;
start = 0;
} else {
end = toFinite(end);
}
step = step === void 0 ? start < end ? 1 : -1 : toFinite(step);
return baseRange(start, end, step, fromRight);
};
}
var range = createRange();
const range$1 = range;
var sortBy = baseRest(function(collection, iteratees) {
if (collection == null) {
return [];
}
var length = iteratees.length;
if (length > 1 && isIterateeCall(collection, iteratees[0], iteratees[1])) {
iteratees = [];
} else if (length > 2 && isIterateeCall(iteratees[0], iteratees[1], iteratees[2])) {
iteratees = [iteratees[0]];
}
return baseOrderBy(collection, baseFlatten(iteratees, 1), []);
});
const sortBy$1 = sortBy;
var idCounter = 0;
function uniqueId(prefix) {
var id = ++idCounter;
return toString(prefix) + id;
}
function baseZipObject(props, values2, assignFunc) {
var index = -1, length = props.length, valsLength = values2.length, result = {};
while (++index < length) {
var value = index < valsLength ? values2[index] : void 0;
assignFunc(result, props[index], value);
}
return result;
}
function zipObject(props, values2) {
return baseZipObject(props || [], values2 || [], assignValue);
}
class List {
constructor() {
var sentinel = {};
sentinel._next = sentinel._prev = sentinel;
this._sentinel = sentinel;
}
dequeue() {
var sentinel = this._sentinel;
var entry = sentinel._prev;
if (entry !== sentinel) {
unlink(entry);
return entry;
}
}
enqueue(entry) {
var sentinel = this._sentinel;
if (entry._prev && entry._next) {
unlink(entry);
}
entry._next = sentinel._next;
sentinel._next._prev = entry;
sentinel._next = entry;
entry._prev = sentinel;
}
toString() {
var strs = [];
var sentinel = this._sentinel;
var curr = sentinel._prev;
while (curr !== sentinel) {
strs.push(JSON.stringify(curr, filterOutLinks));
curr = curr._prev;
}
return "[" + strs.join(", ") + "]";
}
}
function unlink(entry) {
entry._prev._next = entry._next;
entry._next._prev = entry._prev;
delete entry._next;
delete entry._prev;
}
function filterOutLinks(k, v) {
if (k !== "_next" && k !== "_prev") {
return v;
}
}
var DEFAULT_WEIGHT_FN = constant(1);
function greedyFAS(g, weightFn) {
if (g.nodeCount() <= 1) {
return [];
}
var state = buildState(g, weightFn || DEFAULT_WEIGHT_FN);
var results = doGreedyFAS(state.graph, state.buckets, state.zeroIdx);
return flatten(
map(results, function(e) {
return g.outEdges(e.v, e.w);
})
);
}
function doGreedyFAS(g, buckets, zeroIdx) {
var results = [];
var sources = buckets[buckets.length - 1];
var sinks = buckets[0];
var entry;
while (g.nodeCount()) {
while (entry = sinks.dequeue()) {
removeNode(g, buckets, zeroIdx, entry);
}
while (entry = sources.dequeue()) {
removeNode(g, buckets, zeroIdx, entry);
}
if (g.nodeCount()) {
for (var i = buckets.length - 2; i > 0; --i) {
entry = buckets[i].dequeue();
if (entry) {
results = results.concat(removeNode(g, buckets, zeroIdx, entry, true));
break;
}
}
}
}
return results;
}
function removeNode(g, buckets, zeroIdx, entry, collectPredecessors) {
var results = collectPredecessors ? [] : void 0;
forEach(g.inEdges(entry.v), function(edge) {
var weight = g.edge(edge);
var uEntry = g.node(edge.v);
if (collectPredecessors) {
results.push({ v: edge.v, w: edge.w });
}
uEntry.out -= weight;
assignBucket(buckets, zeroIdx, uEntry);
});
forEach(g.outEdges(entry.v), function(edge) {
var weight = g.edge(edge);
var w = edge.w;
var wEntry = g.node(w);
wEntry["in"] -= weight;
assignBucket(buckets, zeroIdx, wEntry);
});
g.removeNode(entry.v);
return results;
}
function buildState(g, weightFn) {
var fasGraph = new Graph();
var maxIn = 0;
var maxOut = 0;
forEach(g.nodes(), function(v) {
fasGraph.setNode(v, { v, in: 0, out: 0 });
});
forEach(g.edges(), function(e) {
var prevWeight = fasGraph.edge(e.v, e.w) || 0;
var weight = weightFn(e);
var edgeWeight = prevWeight + weight;
fasGraph.setEdge(e.v, e.w, edgeWeight);
maxOut = Math.max(maxOut, fasGraph.node(e.v).out += weight);
maxIn = Math.max(maxIn, fasGraph.node(e.w)["in"] += weight);
});
var buckets = range$1(maxOut + maxIn + 3).map(function() {
return new List();
});
var zeroIdx = maxIn + 1;
forEach(fasGraph.nodes(), function(v) {
assignBucket(buckets, zeroIdx, fasGraph.node(v));
});
return { graph: fasGraph, buckets, zeroIdx };
}
function assignBucket(buckets, zeroIdx, entry) {
if (!entry.out) {
buckets[0].enqueue(entry);
} else if (!entry["in"]) {
buckets[buckets.length - 1].enqueue(entry);
} else {
buckets[entry.out - entry["in"] + zeroIdx].enqueue(entry);
}
}
function run$2(g) {
var fas = g.graph().acyclicer === "greedy" ? greedyFAS(g, weightFn(g)) : dfsFAS(g);
forEach(fas, function(e) {
var label = g.edge(e);
g.removeEdge(e);
label.forwardName = e.name;
label.reversed = true;
g.setEdge(e.w, e.v, label, uniqueId("rev"));
});
function weightFn(g2) {
return function(e) {
return g2.edge(e).weight;
};
}
}
function dfsFAS(g) {
var fas = [];
var stack = {};
var visited = {};
function dfs2(v) {
if (has(visited, v)) {
return;
}
visited[v] = true;
stack[v] = true;
forEach(g.outEdges(v), function(e) {
if (has(stack, e.w)) {
fas.push(e);
} else {
dfs2(e.w);
}
});
delete stack[v];
}
forEach(g.nodes(), dfs2);
return fas;
}
function undo$2(g) {
forEach(g.edges(), function(e) {
var label = g.edge(e);
if (label.reversed) {
g.removeEdge(e);
var forwardName = label.forwardName;
delete label.reversed;
delete label.forwardName;
g.setEdge(e.w, e.v, label, forwardName);
}
});
}
function addDummyNode(g, type, attrs, name) {
var v;
do {
v = uniqueId(name);
} while (g.hasNode(v));
attrs.dummy = type;
g.setNode(v, attrs);
return v;
}
function simplify(g) {
var simplified = new Graph().setGraph(g.graph());
forEach(g.nodes(), function(v) {
simplified.setNode(v, g.node(v));
});
forEach(g.edges(), function(e) {
var simpleLabel = simplified.edge(e.v, e.w) || { weight: 0, minlen: 1 };
var label = g.edge(e);
simplified.setEdge(e.v, e.w, {
weight: simpleLabel.weight + label.weight,
minlen: Math.max(simpleLabel.minlen, label.minlen)
});
});
return simplified;
}
function asNonCompoundGraph(g) {
var simplified = new Graph({ multigraph: g.isMultigraph() }).setGraph(g.graph());
forEach(g.nodes(), function(v) {
if (!g.children(v).length) {
simplified.setNode(v, g.node(v));
}
});
forEach(g.edges(), function(e) {
simplified.setEdge(e, g.edge(e));
});
return simplified;
}
function intersectRect(rect, point) {
var x = rect.x;
var y = rect.y;
var dx = point.x - x;
var dy = point.y - y;
var w = rect.width / 2;
var h = rect.height / 2;
if (!dx && !dy) {
throw new Error("Not possible to find intersection inside of the rectangle");
}
var sx, sy;
if (Math.abs(dy) * w > Math.abs(dx) * h) {
if (dy < 0) {
h = -h;
}
sx = h * dx / dy;
sy = h;
} else {
if (dx < 0) {
w = -w;
}
sx = w;
sy = w * dy / dx;
}
return { x: x + sx, y: y + sy };
}
function buildLayerMatrix(g) {
var layering = map(range$1(maxRank(g) + 1), function() {
return [];
});
forEach(g.nodes(), function(v) {
var node = g.node(v);
var rank2 = node.rank;
if (!isUndefined(rank2)) {
layering[rank2][node.order] = v;
}
});
return layering;
}
function normalizeRanks(g) {
var min$1 = min(
map(g.nodes(), function(v) {
return g.node(v).rank;
})
);
forEach(g.nodes(), function(v) {
var node = g.node(v);
if (has(node, "rank")) {
node.rank -= min$1;
}
});
}
function removeEmptyRanks(g) {
var offset = min(
map(g.nodes(), function(v) {
return g.node(v).rank;
})
);
var layers = [];
forEach(g.nodes(), function(v) {
var rank2 = g.node(v).rank - offset;
if (!layers[rank2]) {
layers[rank2] = [];
}
layers[rank2].push(v);
});
var delta = 0;
var nodeRankFactor = g.graph().nodeRankFactor;
forEach(layers, function(vs, i) {
if (isUndefined(vs) && i % nodeRankFactor !== 0) {
--delta;
} else if (delta) {
forEach(vs, function(v) {
g.node(v).rank += delta;
});
}
});
}
function addBorderNode$1(g, prefix, rank2, order2) {
var node = {
width: 0,
height: 0
};
if (arguments.length >= 4) {
node.rank = rank2;
node.order = order2;
}
return addDummyNode(g, "border", node, prefix);
}
function maxRank(g) {
return max(
map(g.nodes(), function(v) {
var rank2 = g.node(v).rank;
if (!isUndefined(rank2)) {
return rank2;
}
})
);
}
function partition(collection, fn) {
var result = { lhs: [], rhs: [] };
forEach(collection, function(value) {
if (fn(value)) {
result.lhs.push(value);
} else {
result.rhs.push(value);
}
});
return result;
}
function time(name, fn) {
var start = now$1();
try {
return fn();
} finally {
console.log(name + " time: " + (now$1() - start) + "ms");
}
}
function notime(name, fn) {
return fn();
}
function addBorderSegments(g) {
function dfs2(v) {
var children = g.children(v);
var node = g.node(v);
if (children.length) {
forEach(children, dfs2);
}
if (has(node, "minRank")) {
node.borderLeft = [];
node.borderRight = [];
for (var rank2 = node.minRank, maxRank2 = node.maxRank + 1; rank2 < maxRank2; ++rank2) {
addBorderNode(g, "borderLeft", "_bl", v, node, rank2);
addBorderNode(g, "borderRight", "_br", v, node, rank2);
}
}
}
forEach(g.children(), dfs2);
}
function addBorderNode(g, prop, prefix, sg, sgNode, rank2) {
var label = { width: 0, height: 0, rank: rank2, borderType: prop };
var prev = sgNode[prop][rank2 - 1];
var curr = addDummyNode(g, "border", label, prefix);
sgNode[prop][rank2] = curr;
g.setParent(curr, sg);
if (prev) {
g.setEdge(prev, curr, { weight: 1 });
}
}
function adjust(g) {
var rankDir = g.graph().rankdir.toLowerCase();
if (rankDir === "lr" || rankDir === "rl") {
swapWidthHeight(g);
}
}
function undo$1(g) {
var rankDir = g.graph().rankdir.toLowerCase();
if (rankDir === "bt" || rankDir === "rl") {
reverseY(g);
}
if (rankDir === "lr" || rankDir === "rl") {
swapXY(g);
swapWidthHeight(g);
}
}
function swapWidthHeight(g) {
forEach(g.nodes(), function(v) {
swapWidthHeightOne(g.node(v));
});
forEach(g.edges(), function(e) {
swapWidthHeightOne(g.edge(e));
});
}
function swapWidthHeightOne(attrs) {
var w = attrs.width;
attrs.width = attrs.height;
attrs.height = w;
}
function reverseY(g) {
forEach(g.nodes(), function(v) {
reverseYOne(g.node(v));
});
forEach(g.edges(), function(e) {
var edge = g.edge(e);
forEach(edge.points, reverseYOne);
if (has(edge, "y")) {
reverseYOne(edge);
}
});
}
function reverseYOne(attrs) {
attrs.y = -attrs.y;
}
function swapXY(g) {
forEach(g.nodes(), function(v) {
swapXYOne(g.node(v));
});
forEach(g.edges(), function(e) {
var edge = g.edge(e);
forEach(edge.points, swapXYOne);
if (has(edge, "x")) {
swapXYOne(edge);
}
});
}
function swapXYOne(attrs) {
var x = attrs.x;
attrs.x = attrs.y;
attrs.y = x;
}
function run$1(g) {
g.graph().dummyChains = [];
forEach(g.edges(), function(edge) {
normalizeEdge(g, edge);
});
}
function normalizeEdge(g, e) {
var v = e.v;
var vRank = g.node(v).rank;
var w = e.w;
var wRank = g.node(w).rank;
var name = e.name;
var edgeLabel = g.edge(e);
var labelRank = edgeLabel.labelRank;
if (wRank === vRank + 1)
return;
g.removeEdge(e);
var dummy, attrs, i;
for (i = 0, ++vRank; vRank < wRank; ++i, ++vRank) {
edgeLabel.points = [];
attrs = {
width: 0,
height: 0,
edgeLabel,
edgeObj: e,
rank: vRank
};
dummy = addDummyNode(g, "edge", attrs, "_d");
if (vRank === labelRank) {
attrs.width = edgeLabel.width;
attrs.height = edgeLabel.height;
attrs.dummy = "edge-label";
attrs.labelpos = edgeLabel.labelpos;
}
g.setEdge(v, dummy, { weight: edgeLabel.weight }, name);
if (i === 0) {
g.graph().dummyChains.push(dummy);
}
v = dummy;
}
g.setEdge(v, w, { weight: edgeLabel.weight }, name);
}
function undo(g) {
forEach(g.graph().dummyChains, function(v) {
var node = g.node(v);
var origLabel = node.edgeLabel;
var w;
g.setEdge(node.edgeObj, origLabel);
while (node.dummy) {
w = g.successors(v)[0];
g.removeNode(v);
origLabel.points.push({ x: node.x, y: node.y });
if (node.dummy === "edge-label") {
origLabel.x = node.x;
origLabel.y = node.y;
origLabel.width = node.width;
origLabel.height = node.height;
}
v = w;
node = g.node(v);
}
});
}
function longestPath(g) {
var visited = {};
function dfs2(v) {
var label = g.node(v);
if (has(visited, v)) {
return label.rank;
}
visited[v] = true;
var rank2 = min(
map(g.outEdges(v), function(e) {
return dfs2(e.w) - g.edge(e).minlen;
})
);
if (rank2 === Number.POSITIVE_INFINITY || // return value of _.map([]) for Lodash 3
rank2 === void 0 || // return value of _.map([]) for Lodash 4
rank2 === null) {
rank2 = 0;
}
return label.rank = rank2;
}
forEach(g.sources(), dfs2);
}
function slack(g, e) {
return g.node(e.w).rank - g.node(e.v).rank - g.edge(e).minlen;
}
function feasibleTree(g) {
var t = new Graph({ directed: false });
var start = g.nodes()[0];
var size = g.nodeCount();
t.setNode(start, {});
var edge, delta;
while (tightTree(t, g) < size) {
edge = findMinSlackEdge(t, g);
delta = t.hasNode(edge.v) ? slack(g, edge) : -slack(g, edge);
shiftRanks(t, g, delta);
}
return t;
}
function tightTree(t, g) {
function dfs2(v) {
forEach(g.nodeEdges(v), function(e) {
var edgeV = e.v, w = v === edgeV ? e.w : edgeV;
if (!t.hasNode(w) && !slack(g, e)) {
t.setNode(w, {});
t.setEdge(v, w, {});
dfs2(w);
}
});
}
forEach(t.nodes(), dfs2);
return t.nodeCount();
}
function findMinSlackEdge(t, g) {
return minBy(g.edges(), function(e) {
if (t.hasNode(e.v) !== t.hasNode(e.w)) {
return slack(g, e);
}
});
}
function shiftRanks(t, g, delta) {
forEach(t.nodes(), function(v) {
g.node(v).rank += delta;
});
}
function CycleException() {
}
CycleException.prototype = new Error();
function dfs$1(g, vs, order2) {
if (!isArray(vs)) {
vs = [vs];
}
var navigation = (g.isDirected() ? g.successors : g.neighbors).bind(g);
var acc = [];
var visited = {};
forEach(vs, function(v) {
if (!g.hasNode(v)) {
throw new Error("Graph does not have node: " + v);
}
doDfs(g, v, order2 === "post", visited, navigation, acc);
});
return acc;
}
function doDfs(g, v, postorder2, visited, navigation, acc) {
if (!has(visited, v)) {
visited[v] = true;
if (!postorder2) {
acc.push(v);
}
forEach(navigation(v), function(w) {
doDfs(g, w, postorder2, visited, navigation, acc);
});
if (postorder2) {
acc.push(v);
}
}
}
function postorder$1(g, vs) {
return dfs$1(g, vs, "post");
}
function preorder(g, vs) {
return dfs$1(g, vs, "pre");
}
networkSimplex.initLowLimValues = initLowLimValues;
networkSimplex.initCutValues = initCutValues;
networkSimplex.calcCutValue = calcCutValue;
networkSimplex.leaveEdge = leaveEdge;
networkSimplex.enterEdge = enterEdge;
networkSimplex.exchangeEdges = exchangeEdges;
function networkSimplex(g) {
g = simplify(g);
longestPath(g);
var t = feasibleTree(g);
initLowLimValues(t);
initCutValues(t, g);
var e, f;
while (e = leaveEdge(t)) {
f = enterEdge(t, g, e);
exchangeEdges(t, g, e, f);
}
}
function initCutValues(t, g) {
var vs = postorder$1(t, t.nodes());
vs = vs.slice(0, vs.length - 1);
forEach(vs, function(v) {
assignCutValue(t, g, v);
});
}
function assignCutValue(t, g, child) {
var childLab = t.node(child);
var parent = childLab.parent;
t.edge(child, parent).cutvalue = calcCutValue(t, g, child);
}
function calcCutValue(t, g, child) {
var childLab = t.node(child);
var parent = childLab.parent;
var childIsTail = true;
var graphEdge = g.edge(child, parent);
var cutValue = 0;
if (!graphEdge) {
childIsTail = false;
graphEdge = g.edge(parent, child);
}
cutValue = graphEdge.weight;
forEach(g.nodeEdges(child), function(e) {
var isOutEdge = e.v === child, other = isOutEdge ? e.w : e.v;
if (other !== parent) {
var pointsToHead = isOutEdge === childIsTail, otherWeight = g.edge(e).weight;
cutValue += pointsToHead ? otherWeight : -otherWeight;
if (isTreeEdge(t, child, other)) {
var otherCutValue = t.edge(child, other).cutvalue;
cutValue += pointsToHead ? -otherCutValue : otherCutValue;
}
}
});
return cutValue;
}
function initLowLimValues(tree, root2) {
if (arguments.length < 2) {
root2 = tree.nodes()[0];
}
dfsAssignLowLim(tree, {}, 1, root2);
}
function dfsAssignLowLim(tree, visited, nextLim, v, parent) {
var low = nextLim;
var label = tree.node(v);
visited[v] = true;
forEach(tree.neighbors(v), function(w) {
if (!has(visited, w)) {
nextLim = dfsAssignLowLim(tree, visited, nextLim, w, v);
}
});
label.low = low;
label.lim = nextLim++;
if (parent) {
label.parent = parent;
} else {
delete label.parent;
}
return nextLim;
}
function leaveEdge(tree) {
return find$1(tree.edges(), function(e) {
return tree.edge(e).cutvalue < 0;
});
}
function enterEdge(t, g, edge) {
var v = edge.v;
var w = edge.w;
if (!g.hasEdge(v, w)) {
v = edge.w;
w = edge.v;
}
var vLabel = t.node(v);
var wLabel = t.node(w);
var tailLabel = vLabel;
var flip = false;
if (vLabel.lim > wLabel.lim) {
tailLabel = wLabel;
flip = true;
}
var candidates = filter(g.edges(), function(edge2) {
return flip === isDescendant(t, t.node(edge2.v), tailLabel) && flip !== isDescendant(t, t.node(edge2.w), tailLabel);
});
return minBy(candidates, function(edge2) {
return slack(g, edge2);
});
}
function exchangeEdges(t, g, e, f) {
var v = e.v;
var w = e.w;
t.removeEdge(v, w);
t.setEdge(f.v, f.w, {});
initLowLimValues(t);
initCutValues(t, g);
updateRanks(t, g);
}
function updateRanks(t, g) {
var root2 = find$1(t.nodes(), function(v) {
return !g.node(v).parent;
});
var vs = preorder(t, root2);
vs = vs.slice(1);
forEach(vs, function(v) {
var parent = t.node(v).parent, edge = g.edge(v, parent), flipped = false;
if (!edge) {
edge = g.edge(parent, v);
flipped = true;
}
g.node(v).rank = g.node(parent).rank + (flipped ? edge.minlen : -edge.minlen);
});
}
function isTreeEdge(tree, u, v) {
return tree.hasEdge(u, v);
}
function isDescendant(tree, vLabel, rootLabel) {
return rootLabel.low <= vLabel.lim && vLabel.lim <= rootLabel.lim;
}
function rank(g) {
switch (g.graph().ranker) {
case "network-simplex":
networkSimplexRanker(g);
break;
case "tight-tree":
tightTreeRanker(g);
break;
case "longest-path":
longestPathRanker(g);
break;
default:
networkSimplexRanker(g);
}
}
var longestPathRanker = longestPath;
function tightTreeRanker(g) {
longestPath(g);
feasibleTree(g);
}
function networkSimplexRanker(g) {
networkSimplex(g);
}
function run(g) {
var root2 = addDummyNode(g, "root", {}, "_root");
var depths = treeDepths(g);
var height = max(values(depths)) - 1;
var nodeSep = 2 * height + 1;
g.graph().nestingRoot = root2;
forEach(g.edges(), function(e) {
g.edge(e).minlen *= nodeSep;
});
var weight = sumWeights(g) + 1;
forEach(g.children(), function(child) {
dfs(g, root2, nodeSep, weight, height, depths, child);
});
g.graph().nodeRankFactor = nodeSep;
}
function dfs(g, root2, nodeSep, weight, height, depths, v) {
var children = g.children(v);
if (!children.length) {
if (v !== root2) {
g.setEdge(root2, v, { weight: 0, minlen: nodeSep });
}
return;
}
var top = addBorderNode$1(g, "_bt");
var bottom = addBorderNode$1(g, "_bb");
var label = g.node(v);
g.setParent(top, v);
label.borderTop = top;
g.setParent(bottom, v);
label.borderBottom = bottom;
forEach(children, function(child) {
dfs(g, root2, nodeSep, weight, height, depths, child);
var childNode = g.node(child);
var childTop = childNode.borderTop ? childNode.borderTop : child;
var childBottom = childNode.borderBottom ? childNode.borderBottom : child;
var thisWeight = childNode.borderTop ? weight : 2 * weight;
var minlen = childTop !== childBottom ? 1 : height - depths[v] + 1;
g.setEdge(top, childTop, {
weight: thisWeight,
minlen,
nestingEdge: true
});
g.setEdge(childBottom, bottom, {
weight: thisWeight,
minlen,
nestingEdge: true
});
});
if (!g.parent(v)) {
g.setEdge(root2, top, { weight: 0, minlen: height + depths[v] });
}
}
function treeDepths(g) {
var depths = {};
function dfs2(v, depth) {
var children = g.children(v);
if (children && children.length) {
forEach(children, function(child) {
dfs2(child, depth + 1);
});
}
depths[v] = depth;
}
forEach(g.children(), function(v) {
dfs2(v, 1);
});
return depths;
}
function sumWeights(g) {
return reduce(
g.edges(),
function(acc, e) {
return acc + g.edge(e).weight;
},
0
);
}
function cleanup(g) {
var graphLabel = g.graph();
g.removeNode(graphLabel.nestingRoot);
delete graphLabel.nestingRoot;
forEach(g.edges(), function(e) {
var edge = g.edge(e);
if (edge.nestingEdge) {
g.removeEdge(e);
}
});
}
function addSubgraphConstraints(g, cg, vs) {
var prev = {}, rootPrev;
forEach(vs, function(v) {
var child = g.parent(v), parent, prevChild;
while (child) {
parent = g.parent(child);
if (parent) {
prevChild = prev[parent];
prev[parent] = child;
} else {
prevChild = rootPrev;
rootPrev = child;
}
if (prevChild && prevChild !== child) {
cg.setEdge(prevChild, child);
return;
}
child = parent;
}
});
}
function buildLayerGraph(g, rank2, relationship) {
var root2 = createRootNode(g), result = new Graph({ compound: true }).setGraph({ root: root2 }).setDefaultNodeLabel(function(v) {
return g.node(v);
});
forEach(g.nodes(), function(v) {
var node = g.node(v), parent = g.parent(v);
if (node.rank === rank2 || node.minRank <= rank2 && rank2 <= node.maxRank) {
result.setNode(v);
result.setParent(v, parent || root2);
forEach(g[relationship](v), function(e) {
var u = e.v === v ? e.w : e.v, edge = result.edge(u, v), weight = !isUndefined(edge) ? edge.weight : 0;
result.setEdge(u, v, { weight: g.edge(e).weight + weight });
});
if (has(node, "minRank")) {
result.setNode(v, {
borderLeft: node.borderLeft[rank2],
borderRight: node.borderRight[rank2]
});
}
}
});
return result;
}
function createRootNode(g) {
var v;
while (g.hasNode(v = uniqueId("_root")))
;
return v;
}
function crossCount(g, layering) {
var cc = 0;
for (var i = 1; i < layering.length; ++i) {
cc += twoLayerCrossCount(g, layering[i - 1], layering[i]);
}
return cc;
}
function twoLayerCrossCount(g, northLayer, southLayer) {
var southPos = zipObject(
southLayer,
map(southLayer, function(v, i) {
return i;
})
);
var southEntries = flatten(
map(northLayer, function(v) {
return sortBy$1(
map(g.outEdges(v), function(e) {
return { pos: southPos[e.w], weight: g.edge(e).weight };
}),
"pos"
);
})
);
var firstIndex = 1;
while (firstIndex < southLayer.length)
firstIndex <<= 1;
var treeSize = 2 * firstIndex - 1;
firstIndex -= 1;
var tree = map(new Array(treeSize), function() {
return 0;
});
var cc = 0;
forEach(
// @ts-expect-error
southEntries.forEach(function(entry) {
var index = entry.pos + firstIndex;
tree[index] += entry.weight;
var weightSum = 0;
while (index > 0) {
if (index % 2) {
weightSum += tree[index + 1];
}
index = index - 1 >> 1;
tree[index] += entry.weight;
}
cc += entry.weight * weightSum;
})
);
return cc;
}
function initOrder(g) {
var visited = {};
var simpleNodes = filter(g.nodes(), function(v) {
return !g.children(v).length;
});
var maxRank2 = max(
map(simpleNodes, function(v) {
return g.node(v).rank;
})
);
var layers = map(range$1(maxRank2 + 1), function() {
return [];
});
function dfs2(v) {
if (has(visited, v))
return;
visited[v] = true;
var node = g.node(v);
layers[node.rank].push(v);
forEach(g.successors(v), dfs2);
}
var orderedVs = sortBy$1(simpleNodes, function(v) {
return g.node(v).rank;
});
forEach(orderedVs, dfs2);
return layers;
}
function barycenter(g, movable) {
return map(movable, function(v) {
var inV = g.inEdges(v);
if (!inV.length) {
return { v };
} else {
var result = reduce(
inV,
function(acc, e) {
var edge = g.edge(e), nodeU = g.node(e.v);
return {
sum: acc.sum + edge.weight * nodeU.order,
weight: acc.weight + edge.weight
};
},
{ sum: 0, weight: 0 }
);
return {
v,
barycenter: result.sum / result.weight,
weight: result.weight
};
}
});
}
function resolveConflicts(entries, cg) {
var mappedEntries = {};
forEach(entries, function(entry, i) {
var tmp = mappedEntries[entry.v] = {
indegree: 0,
in: [],
out: [],
vs: [entry.v],
i
};
if (!isUndefined(entry.barycenter)) {
tmp.barycenter = entry.barycenter;
tmp.weight = entry.weight;
}
});
forEach(cg.edges(), function(e) {
var entryV = mappedEntries[e.v];
var entryW = mappedEntries[e.w];
if (!isUndefined(entryV) && !isUndefined(entryW)) {
entryW.indegree++;
entryV.out.push(mappedEntries[e.w]);
}
});
var sourceSet = filter(mappedEntries, function(entry) {
return !entry.indegree;
});
return doResolveConflicts(sourceSet);
}
function doResolveConflicts(sourceSet) {
var entries = [];
function handleIn(vEntry) {
return function(uEntry) {
if (uEntry.merged) {
return;
}
if (isUndefined(uEntry.barycenter) || isUndefined(vEntry.barycenter) || uEntry.barycenter >= vEntry.barycenter) {
mergeEntries(vEntry, uEntry);
}
};
}
function handleOut(vEntry) {
return function(wEntry) {
wEntry["in"].push(vEntry);
if (--wEntry.indegree === 0) {
sourceSet.push(wEntry);
}
};
}
while (sourceSet.length) {
var entry = sourceSet.pop();
entries.push(entry);
forEach(entry["in"].reverse(), handleIn(entry));
forEach(entry.out, handleOut(entry));
}
return map(
filter(entries, function(entry2) {
return !entry2.merged;
}),
function(entry2) {
return pick$1(entry2, ["vs", "i", "barycenter", "weight"]);
}
);
}
function mergeEntries(target, source) {
var sum = 0;
var weight = 0;
if (target.weight) {
sum += target.barycenter * target.weight;
weight += target.weight;
}
if (source.weight) {
sum += source.barycenter * source.weight;
weight += source.weight;
}
target.vs = source.vs.concat(target.vs);
target.barycenter = sum / weight;
target.weight = weight;
target.i = Math.min(source.i, target.i);
source.merged = true;
}
function sort(entries, biasRight) {
var parts = partition(entries, function(entry) {
return has(entry, "barycenter");
});
var sortable = parts.lhs, unsortable = sortBy$1(parts.rhs, function(entry) {
return -entry.i;
}), vs = [], sum = 0, weight = 0, vsIndex = 0;
sortable.sort(compareWithBias(!!biasRight));
vsIndex = consumeUnsortable(vs, unsortable, vsIndex);
forEach(sortable, function(entry) {
vsIndex += entry.vs.length;
vs.push(entry.vs);
sum += entry.barycenter * entry.weight;
weight += entry.weight;
vsIndex = consumeUnsortable(vs, unsortable, vsIndex);
});
var result = { vs: flatten(vs) };
if (weight) {
result.barycenter = sum / weight;
result.weight = weight;
}
return result;
}
function consumeUnsortable(vs, unsortable, index) {
var last$1;
while (unsortable.length && (last$1 = last(unsortable)).i <= index) {
unsortable.pop();
vs.push(last$1.vs);
index++;
}
return index;
}
function compareWithBias(bias) {
return function(entryV, entryW) {
if (entryV.barycenter < entryW.barycenter) {
return -1;
} else if (entryV.barycenter > entryW.barycenter) {
return 1;
}
return !bias ? entryV.i - entryW.i : entryW.i - entryV.i;
};
}
function sortSubgraph(g, v, cg, biasRight) {
var movable = g.children(v);
var node = g.node(v);
var bl = node ? node.borderLeft : void 0;
var br = node ? node.borderRight : void 0;
var subgraphs = {};
if (bl) {
movable = filter(movable, function(w) {
return w !== bl && w !== br;
});
}
var barycenters = barycenter(g, movable);
forEach(barycenters, function(entry) {
if (g.children(entry.v).length) {
var subgraphResult = sortSubgraph(g, entry.v, cg, biasRight);
subgraphs[entry.v] = subgraphResult;
if (has(subgraphResult, "barycenter")) {
mergeBarycenters(entry, subgraphResult);
}
}
});
var entries = resolveConflicts(barycenters, cg);
expandSubgraphs(entries, subgraphs);
var result = sort(entries, biasRight);
if (bl) {
result.vs = flatten([bl, result.vs, br]);
if (g.predecessors(bl).length) {
var blPred = g.node(g.predecessors(bl)[0]), brPred = g.node(g.predecessors(br)[0]);
if (!has(result, "barycenter")) {
result.barycenter = 0;
result.weight = 0;
}
result.barycenter = (result.barycenter * result.weight + blPred.order + brPred.order) / (result.weight + 2);
result.weight += 2;
}
}
return result;
}
function expandSubgraphs(entries, subgraphs) {
forEach(entries, function(entry) {
entry.vs = flatten(
entry.vs.map(function(v) {
if (subgraphs[v]) {
return subgraphs[v].vs;
}
return v;
})
);
});
}
function mergeBarycenters(target, other) {
if (!isUndefined(target.barycenter)) {
target.barycenter = (target.barycenter * target.weight + other.barycenter * other.weight) / (target.weight + other.weight);
target.weight += other.weight;
} else {
target.barycenter = other.barycenter;
target.weight = other.weight;
}
}
function order(g) {
var maxRank$1 = maxRank(g), downLayerGraphs = buildLayerGraphs(g, range$1(1, maxRank$1 + 1), "inEdges"), upLayerGraphs = buildLayerGraphs(g, range$1(maxRank$1 - 1, -1, -1), "outEdges");
var layering = initOrder(g);
assignOrder(g, layering);
var bestCC = Number.POSITIVE_INFINITY, best;
for (var i = 0, lastBest = 0; lastBest < 4; ++i, ++lastBest) {
sweepLayerGraphs(i % 2 ? downLayerGraphs : upLayerGraphs, i % 4 >= 2);
layering = buildLayerMatrix(g);
var cc = crossCount(g, layering);
if (cc < bestCC) {
lastBest = 0;
best = cloneDeep(layering);
bestCC = cc;
}
}
assignOrder(g, best);
}
function buildLayerGraphs(g, ranks, relationship) {
return map(ranks, function(rank2) {
return buildLayerGraph(g, rank2, relationship);
});
}
function sweepLayerGraphs(layerGraphs, biasRight) {
var cg = new Graph();
forEach(layerGraphs, function(lg) {
var root2 = lg.graph().root;
var sorted = sortSubgraph(lg, root2, cg, biasRight);
forEach(sorted.vs, function(v, i) {
lg.node(v).order = i;
});
addSubgraphConstraints(lg, cg, sorted.vs);
});
}
function assignOrder(g, layering) {
forEach(layering, function(layer) {
forEach(layer, function(v, i) {
g.node(v).order = i;
});
});
}
function parentDummyChains(g) {
var postorderNums = postorder(g);
forEach(g.graph().dummyChains, function(v) {
var node = g.node(v);
var edgeObj = node.edgeObj;
var pathData = findPath(g, postorderNums, edgeObj.v, edgeObj.w);
var path = pathData.path;
var lca = pathData.lca;
var pathIdx = 0;
var pathV = path[pathIdx];
var ascending = true;
while (v !== edgeObj.w) {
node = g.node(v);
if (ascending) {
while ((pathV = path[pathIdx]) !== lca && g.node(pathV).maxRank < node.rank) {
pathIdx++;
}
if (pathV === lca) {
ascending = false;
}
}
if (!ascending) {
while (pathIdx < path.length - 1 && g.node(pathV = path[pathIdx + 1]).minRank <= node.rank) {
pathIdx++;
}
pathV = path[pathIdx];
}
g.setParent(v, pathV);
v = g.successors(v)[0];
}
});
}
function findPath(g, postorderNums, v, w) {
var vPath = [];
var wPath = [];
var low = Math.min(postorderNums[v].low, postorderNums[w].low);
var lim = Math.max(postorderNums[v].lim, postorderNums[w].lim);
var parent;
var lca;
parent = v;
do {
parent = g.parent(parent);
vPath.push(parent);
} while (parent && (postorderNums[parent].low > low || lim > postorderNums[parent].lim));
lca = parent;
parent = w;
while ((parent = g.parent(parent)) !== lca) {
wPath.push(parent);
}
return { path: vPath.concat(wPath.reverse()), lca };
}
function postorder(g) {
var result = {};
var lim = 0;
function dfs2(v) {
var low = lim;
forEach(g.children(v), dfs2);
result[v] = { low, lim: lim++ };
}
forEach(g.children(), dfs2);
return result;
}
function findType1Conflicts(g, layering) {
var conflicts = {};
function visitLayer(prevLayer, layer) {
var k0 = 0, scanPos = 0, prevLayerLength = prevLayer.length, lastNode = last(layer);
forEach(layer, function(v, i) {
var w = findOtherInnerSegmentNode(g, v), k1 = w ? g.node(w).order : prevLayerLength;
if (w || v === lastNode) {
forEach(layer.slice(scanPos, i + 1), function(scanNode) {
forEach(g.predecessors(scanNode), function(u) {
var uLabel = g.node(u), uPos = uLabel.order;
if ((uPos < k0 || k1 < uPos) && !(uLabel.dummy && g.node(scanNode).dummy)) {
addConflict(conflicts, u, scanNode);
}
});
});
scanPos = i + 1;
k0 = k1;
}
});
return layer;
}
reduce(layering, visitLayer);
return conflicts;
}
function findType2Conflicts(g, layering) {
var conflicts = {};
function scan(south, southPos, southEnd, prevNorthBorder, nextNorthBorder) {
var v;
forEach(range$1(southPos, southEnd), function(i) {
v = south[i];
if (g.node(v).dummy) {
forEach(g.predecessors(v), function(u) {
var uNode = g.node(u);
if (uNode.dummy && (uNode.order < prevNorthBorder || uNode.order > nextNorthBorder)) {
addConflict(conflicts, u, v);
}
});
}
});
}
function visitLayer(north, south) {
var prevNorthPos = -1, nextNorthPos, southPos = 0;
forEach(south, function(v, southLookahead) {
if (g.node(v).dummy === "border") {
var predecessors = g.predecessors(v);
if (predecessors.length) {
nextNorthPos = g.node(predecessors[0]).order;
scan(south, southPos, southLookahead, prevNorthPos, nextNorthPos);
southPos = southLookahead;
prevNorthPos = nextNorthPos;
}
}
scan(south, southPos, south.length, nextNorthPos, north.length);
});
return south;
}
reduce(layering, visitLayer);
return conflicts;
}
function findOtherInnerSegmentNode(g, v) {
if (g.node(v).dummy) {
return find$1(g.predecessors(v), function(u) {
return g.node(u).dummy;
});
}
}
function addConflict(conflicts, v, w) {
if (v > w) {
var tmp = v;
v = w;
w = tmp;
}
var conflictsV = conflicts[v];
if (!conflictsV) {
conflicts[v] = conflictsV = {};
}
conflictsV[w] = true;
}
function hasConflict(conflicts, v, w) {
if (v > w) {
var tmp = v;
v = w;
w = tmp;
}
return has(conflicts[v], w);
}
function verticalAlignment(g, layering, conflicts, neighborFn) {
var root2 = {}, align = {}, pos = {};
forEach(layering, function(layer) {
forEach(layer, function(v, order2) {
root2[v] = v;
align[v] = v;
pos[v] = order2;
});
});
forEach(layering, function(layer) {
var prevIdx = -1;
forEach(layer, function(v) {
var ws = neighborFn(v);
if (ws.length) {
ws = sortBy$1(ws, function(w2) {
return pos[w2];
});
var mp = (ws.length - 1) / 2;
for (var i = Math.floor(mp), il = Math.ceil(mp); i <= il; ++i) {
var w = ws[i];
if (align[v] === v && prevIdx < pos[w] && !hasConflict(conflicts, v, w)) {
align[w] = v;
align[v] = root2[v] = root2[w];
prevIdx = pos[w];
}
}
}
});
});
return { root: root2, align };
}
function horizontalCompaction(g, layering, root2, align, reverseSep) {
var xs = {}, blockG = buildBlockGraph(g, layering, root2, reverseSep), borderType = reverseSep ? "borderLeft" : "borderRight";
function iterate(setXsFunc, nextNodesFunc) {
var stack = blockG.nodes();
var elem = stack.pop();
var visited = {};
while (elem) {
if (visited[elem]) {
setXsFunc(elem);
} else {
visited[elem] = true;
stack.push(elem);
stack = stack.concat(nextNodesFunc(elem));
}
elem = stack.pop();
}
}
function pass1(elem) {
xs[elem] = blockG.inEdges(elem).reduce(function(acc, e) {
return Math.max(acc, xs[e.v] + blockG.edge(e));
}, 0);
}
function pass2(elem) {
var min2 = blockG.outEdges(elem).reduce(function(acc, e) {
return Math.min(acc, xs[e.w] - blockG.edge(e));
}, Number.POSITIVE_INFINITY);
var node = g.node(elem);
if (min2 !== Number.POSITIVE_INFINITY && node.borderType !== borderType) {
xs[elem] = Math.max(xs[elem], min2);
}
}
iterate(pass1, blockG.predecessors.bind(blockG));
iterate(pass2, blockG.successors.bind(blockG));
forEach(align, function(v) {
xs[v] = xs[root2[v]];
});
return xs;
}
function buildBlockGraph(g, layering, root2, reverseSep) {
var blockGraph = new Graph(), graphLabel = g.graph(), sepFn = sep(graphLabel.nodesep, graphLabel.edgesep, reverseSep);
forEach(layering, function(layer) {
var u;
forEach(layer, function(v) {
var vRoot = root2[v];
blockGraph.setNode(vRoot);
if (u) {
var uRoot = root2[u], prevMax = blockGraph.edge(uRoot, vRoot);
blockGraph.setEdge(uRoot, vRoot, Math.max(sepFn(g, v, u), prevMax || 0));
}
u = v;
});
});
return blockGraph;
}
function findSmallestWidthAlignment(g, xss) {
return minBy(values(xss), function(xs) {
var max2 = Number.NEGATIVE_INFINITY;
var min2 = Number.POSITIVE_INFINITY;
forIn(xs, function(x, v) {
var halfWidth = width(g, v) / 2;
max2 = Math.max(x + halfWidth, max2);
min2 = Math.min(x - halfWidth, min2);
});
return max2 - min2;
});
}
function alignCoordinates(xss, alignTo) {
var alignToVals = values(alignTo), alignToMin = min(alignToVals), alignToMax = max(alignToVals);
forEach(["u", "d"], function(vert) {
forEach(["l", "r"], function(horiz) {
var alignment = vert + horiz, xs = xss[alignment], delta;
if (xs === alignTo)
return;
var xsVals = values(xs);
delta = horiz === "l" ? alignToMin - min(xsVals) : alignToMax - max(xsVals);
if (delta) {
xss[alignment] = mapValues(xs, function(x) {
return x + delta;
});
}
});
});
}
function balance(xss, align) {
return mapValues(xss.ul, function(ignore, v) {
if (align) {
return xss[align.toLowerCase()][v];
} else {
var xs = sortBy$1(map(xss, v));
return (xs[1] + xs[2]) / 2;
}
});
}
function positionX(g) {
var layering = buildLayerMatrix(g);
var conflicts = merge(findType1Conflicts(g, layering), findType2Conflicts(g, layering));
var xss = {};
var adjustedLayering;
forEach(["u", "d"], function(vert) {
adjustedLayering = vert === "u" ? layering : values(layering).reverse();
forEach(["l", "r"], function(horiz) {
if (horiz === "r") {
adjustedLayering = map(adjustedLayering, function(inner) {
return values(inner).reverse();
});
}
var neighborFn = (vert === "u" ? g.predecessors : g.successors).bind(g);
var align = verticalAlignment(g, adjustedLayering, conflicts, neighborFn);
var xs = horizontalCompaction(g, adjustedLayering, align.root, align.align, horiz === "r");
if (horiz === "r") {
xs = mapValues(xs, function(x) {
return -x;
});
}
xss[vert + horiz] = xs;
});
});
var smallestWidth = findSmallestWidthAlignment(g, xss);
alignCoordinates(xss, smallestWidth);
return balance(xss, g.graph().align);
}
function sep(nodeSep, edgeSep, reverseSep) {
return function(g, v, w) {
var vLabel = g.node(v);
var wLabel = g.node(w);
var sum = 0;
var delta;
sum += vLabel.width / 2;
if (has(vLabel, "labelpos")) {
switch (vLabel.labelpos.toLowerCase()) {
case "l":
delta = -vLabel.width / 2;
break;
case "r":
delta = vLabel.width / 2;
break;
}
}
if (delta) {
sum += reverseSep ? delta : -delta;
}
delta = 0;
sum += (vLabel.dummy ? edgeSep : nodeSep) / 2;
sum += (wLabel.dummy ? edgeSep : nodeSep) / 2;
sum += wLabel.width / 2;
if (has(wLabel, "labelpos")) {
switch (wLabel.labelpos.toLowerCase()) {
case "l":
delta = wLabel.width / 2;
break;
case "r":
delta = -wLabel.width / 2;
break;
}
}
if (delta) {
sum += reverseSep ? delta : -delta;
}
delta = 0;
return sum;
};
}
function width(g, v) {
return g.node(v).width;
}
function position(g) {
g = asNonCompoundGraph(g);
positionY(g);
forOwn(positionX(g), function(x, v) {
g.node(v).x = x;
});
}
function positionY(g) {
var layering = buildLayerMatrix(g);
var rankSep = g.graph().ranksep;
var prevY = 0;
forEach(layering, function(layer) {
var maxHeight = max(
map(layer, function(v) {
return g.node(v).height;
})
);
forEach(layer, function(v) {
g.node(v).y = prevY + maxHeight / 2;
});
prevY += maxHeight + rankSep;
});
}
function layout(g, opts) {
var time$1 = opts && opts.debugTiming ? time : notime;
time$1("layout", function() {
var layoutGraph = time$1(" buildLayoutGraph", function() {
return buildLayoutGraph(g);
});
time$1(" runLayout", function() {
runLayout(layoutGraph, time$1);
});
time$1(" updateInputGraph", function() {
updateInputGraph(g, layoutGraph);
});
});
}
function runLayout(g, time2) {
time2(" makeSpaceForEdgeLabels", function() {
makeSpaceForEdgeLabels(g);
});
time2(" removeSelfEdges", function() {
removeSelfEdges(g);
});
time2(" acyclic", function() {
run$2(g);
});
time2(" nestingGraph.run", function() {
run(g);
});
time2(" rank", function() {
rank(asNonCompoundGraph(g));
});
time2(" injectEdgeLabelProxies", function() {
injectEdgeLabelProxies(g);
});
time2(" removeEmptyRanks", function() {
removeEmptyRanks(g);
});
time2(" nestingGraph.cleanup", function() {
cleanup(g);
});
time2(" normalizeRanks", function() {
normalizeRanks(g);
});
time2(" assignRankMinMax", function() {
assignRankMinMax(g);
});
time2(" removeEdgeLabelProxies", function() {
removeEdgeLabelProxies(g);
});
time2(" normalize.run", function() {
run$1(g);
});
time2(" parentDummyChains", function() {
parentDummyChains(g);
});
time2(" addBorderSegments", function() {
addBorderSegments(g);
});
time2(" order", function() {
order(g);
});
time2(" insertSelfEdges", function() {
insertSelfEdges(g);
});
time2(" adjustCoordinateSystem", function() {
adjust(g);
});
time2(" position", function() {
position(g);
});
time2(" positionSelfEdges", function() {
positionSelfEdges(g);
});
time2(" removeBorderNodes", function() {
removeBorderNodes(g);
});
time2(" normalize.undo", function() {
undo(g);
});
time2(" fixupEdgeLabelCoords", function() {
fixupEdgeLabelCoords(g);
});
time2(" undoCoordinateSystem", function() {
undo$1(g);
});
time2(" translateGraph", function() {
translateGraph(g);
});
time2(" assignNodeIntersects", function() {
assignNodeIntersects(g);
});
time2(" reversePoints", function() {
reversePointsForReversedEdges(g);
});
time2(" acyclic.undo", function() {
undo$2(g);
});
}
function updateInputGraph(inputGraph, layoutGraph) {
forEach(inputGraph.nodes(), function(v) {
var inputLabel = inputGraph.node(v);
var layoutLabel = layoutGraph.node(v);
if (inputLabel) {
inputLabel.x = layoutLabel.x;
inputLabel.y = layoutLabel.y;
if (layoutGraph.children(v).length) {
inputLabel.width = layoutLabel.width;
inputLabel.height = layoutLabel.height;
}
}
});
forEach(inputGraph.edges(), function(e) {
var inputLabel = inputGraph.edge(e);
var layoutLabel = layoutGraph.edge(e);
inputLabel.points = layoutLabel.points;
if (has(layoutLabel, "x")) {
inputLabel.x = layoutLabel.x;
inputLabel.y = layoutLabel.y;
}
});
inputGraph.graph().width = layoutGraph.graph().width;
inputGraph.graph().height = layoutGraph.graph().height;
}
var graphNumAttrs = ["nodesep", "edgesep", "ranksep", "marginx", "marginy"];
var graphDefaults = { ranksep: 50, edgesep: 20, nodesep: 50, rankdir: "tb" };
var graphAttrs = ["acyclicer", "ranker", "rankdir", "align"];
var nodeNumAttrs = ["width", "height"];
var nodeDefaults = { width: 0, height: 0 };
var edgeNumAttrs = ["minlen", "weight", "width", "height", "labeloffset"];
var edgeDefaults = {
minlen: 1,
weight: 1,
width: 0,
height: 0,
labeloffset: 10,
labelpos: "r"
};
var edgeAttrs = ["labelpos"];
function buildLayoutGraph(inputGraph) {
var g = new Graph({ multigraph: true, compound: true });
var graph = canonicalize(inputGraph.graph());
g.setGraph(
merge({}, graphDefaults, selectNumberAttrs(graph, graphNumAttrs), pick$1(graph, graphAttrs))
);
forEach(inputGraph.nodes(), function(v) {
var node = canonicalize(inputGraph.node(v));
g.setNode(v, defaults$1(selectNumberAttrs(node, nodeNumAttrs), nodeDefaults));
g.setParent(v, inputGraph.parent(v));
});
forEach(inputGraph.edges(), function(e) {
var edge = canonicalize(inputGraph.edge(e));
g.setEdge(
e,
merge({}, edgeDefaults, selectNumberAttrs(edge, edgeNumAttrs), pick$1(edge, edgeAttrs))
);
});
return g;
}
function makeSpaceForEdgeLabels(g) {
var graph = g.graph();
graph.ranksep /= 2;
forEach(g.edges(), function(e) {
var edge = g.edge(e);
edge.minlen *= 2;
if (edge.labelpos.toLowerCase() !== "c") {
if (graph.rankdir === "TB" || graph.rankdir === "BT") {
edge.width += edge.labeloffset;
} else {
edge.height += edge.labeloffset;
}
}
});
}
function injectEdgeLabelProxies(g) {
forEach(g.edges(), function(e) {
var edge = g.edge(e);
if (edge.width && edge.height) {
var v = g.node(e.v);
var w = g.node(e.w);
var label = { rank: (w.rank - v.rank) / 2 + v.rank, e };
addDummyNode(g, "edge-proxy", label, "_ep");
}
});
}
function assignRankMinMax(g) {
var maxRank2 = 0;
forEach(g.nodes(), function(v) {
var node = g.node(v);
if (node.borderTop) {
node.minRank = g.node(node.borderTop).rank;
node.maxRank = g.node(node.borderBottom).rank;
maxRank2 = max(maxRank2, node.maxRank);
}
});
g.graph().maxRank = maxRank2;
}
function removeEdgeLabelProxies(g) {
forEach(g.nodes(), function(v) {
var node = g.node(v);
if (node.dummy === "edge-proxy") {
g.edge(node.e).labelRank = node.rank;
g.removeNode(v);
}
});
}
function translateGraph(g) {
var minX = Number.POSITIVE_INFINITY;
var maxX = 0;
var minY = Number.POSITIVE_INFINITY;
var maxY = 0;
var graphLabel = g.graph();
var marginX = graphLabel.marginx || 0;
var marginY = graphLabel.marginy || 0;
function getExtremes(attrs) {
var x = attrs.x;
var y = attrs.y;
var w = attrs.width;
var h = attrs.height;
minX = Math.min(minX, x - w / 2);
maxX = Math.max(maxX, x + w / 2);
minY = Math.min(minY, y - h / 2);
maxY = Math.max(maxY, y + h / 2);
}
forEach(g.nodes(), function(v) {
getExtremes(g.node(v));
});
forEach(g.edges(), function(e) {
var edge = g.edge(e);
if (has(edge, "x")) {
getExtremes(edge);
}
});
minX -= marginX;
minY -= marginY;
forEach(g.nodes(), function(v) {
var node = g.node(v);
node.x -= minX;
node.y -= minY;
});
forEach(g.edges(), function(e) {
var edge = g.edge(e);
forEach(edge.points, function(p) {
p.x -= minX;
p.y -= minY;
});
if (has(edge, "x")) {
edge.x -= minX;
}
if (has(edge, "y")) {
edge.y -= minY;
}
});
graphLabel.width = maxX - minX + marginX;
graphLabel.height = maxY - minY + marginY;
}
function assignNodeIntersects(g) {
forEach(g.edges(), function(e) {
var edge = g.edge(e);
var nodeV = g.node(e.v);
var nodeW = g.node(e.w);
var p1, p2;
if (!edge.points) {
edge.points = [];
p1 = nodeW;
p2 = nodeV;
} else {
p1 = edge.points[0];
p2 = edge.points[edge.points.length - 1];
}
edge.points.unshift(intersectRect(nodeV, p1));
edge.points.push(intersectRect(nodeW, p2));
});
}
function fixupEdgeLabelCoords(g) {
forEach(g.edges(), function(e) {
var edge = g.edge(e);
if (has(edge, "x")) {
if (edge.labelpos === "l" || edge.labelpos === "r") {
edge.width -= edge.labeloffset;
}
switch (edge.labelpos) {
case "l":
edge.x -= edge.width / 2 + edge.labeloffset;
break;
case "r":
edge.x += edge.width / 2 + edge.labeloffset;
break;
}
}
});
}
function reversePointsForReversedEdges(g) {
forEach(g.edges(), function(e) {
var edge = g.edge(e);
if (edge.reversed) {
edge.points.reverse();
}
});
}
function removeBorderNodes(g) {
forEach(g.nodes(), function(v) {
if (g.children(v).length) {
var node = g.node(v);
var t = g.node(node.borderTop);
var b = g.node(node.borderBottom);
var l = g.node(last(node.borderLeft));
var r = g.node(last(node.borderRight));
node.width = Math.abs(r.x - l.x);
node.height = Math.abs(b.y - t.y);
node.x = l.x + node.width / 2;
node.y = t.y + node.height / 2;
}
});
forEach(g.nodes(), function(v) {
if (g.node(v).dummy === "border") {
g.removeNode(v);
}
});
}
function removeSelfEdges(g) {
forEach(g.edges(), function(e) {
if (e.v === e.w) {
var node = g.node(e.v);
if (!node.selfEdges) {
node.selfEdges = [];
}
node.selfEdges.push({ e, label: g.edge(e) });
g.removeEdge(e);
}
});
}
function insertSelfEdges(g) {
var layers = buildLayerMatrix(g);
forEach(layers, function(layer) {
var orderShift = 0;
forEach(layer, function(v, i) {
var node = g.node(v);
node.order = i + orderShift;
forEach(node.selfEdges, function(selfEdge) {
addDummyNode(
g,
"selfedge",
{
width: selfEdge.label.width,
height: selfEdge.label.height,
rank: node.rank,
order: i + ++orderShift,
e: selfEdge.e,
label: selfEdge.label
},
"_se"
);
});
delete node.selfEdges;
});
});
}
function positionSelfEdges(g) {
forEach(g.nodes(), function(v) {
var node = g.node(v);
if (node.dummy === "selfedge") {
var selfNode = g.node(node.e.v);
var x = selfNode.x + selfNode.width / 2;
var y = selfNode.y;
var dx = node.x - x;
var dy = selfNode.height / 2;
g.setEdge(node.e, node.label);
g.removeNode(v);
node.label.points = [
{ x: x + 2 * dx / 3, y: y - dy },
{ x: x + 5 * dx / 6, y: y - dy },
{ x: x + dx, y },
{ x: x + 5 * dx / 6, y: y + dy },
{ x: x + 2 * dx / 3, y: y + dy }
];
node.label.x = node.x;
node.label.y = node.y;
}
});
}
function selectNumberAttrs(obj, attrs) {
return mapValues(pick$1(obj, attrs), Number);
}
function canonicalize(attrs) {
var newAttrs = {};
forEach(attrs, function(v, k) {
newAttrs[k.toLowerCase()] = v;
});
return newAttrs;
}
export {
defaults$1 as d,
layout as l,
map as m,
pick$1 as p,
range$1 as r,
uniqueId as u
};