// Copyright 2024-2025 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file palettefx.inc * @brief PaletteFx community module effects definitions * * For full documentation, see * */ #ifdef COMMUNITY_MODULE_PALETTEFX_ENABLE #include "palettefx_default_config.h" #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_GRADIENT_ENABLE) RGB_MATRIX_EFFECT(PALETTEFX_GRADIENT) #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_FLOW_ENABLE) RGB_MATRIX_EFFECT(PALETTEFX_FLOW) #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_RIPPLE_ENABLE) RGB_MATRIX_EFFECT(PALETTEFX_RIPPLE) #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_SPARKLE_ENABLE) RGB_MATRIX_EFFECT(PALETTEFX_SPARKLE) #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_VORTEX_ENABLE) RGB_MATRIX_EFFECT(PALETTEFX_VORTEX) #endif #if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && ( \ defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_REACTIVE_ENABLE)) RGB_MATRIX_EFFECT(PALETTEFX_REACTIVE) #endif #ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS #include "palettefx.h" #if !(defined(PALETTEFX_ENABLE_ALL_EFFECTS) || \ defined(PALETTEFX_GRADIENT_ENABLE) || \ defined(PALETTEFX_FLOW_ENABLE) || \ defined(PALETTEFX_RIPPLE_ENABLE) || \ defined(PALETTEFX_SPARKLE_ENABLE) || \ defined(PALETTEFX_VORTEX_ENABLE) || \ (defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && \ defined(PALETTEFX_REACTIVE_ENABLE))) #pragma message \ "palettefx: No palettefx effects are enabled. Enable all effects by adding in config.h `#define PALETTEFX_ENABLE_ALL_EFFECTS`, or enable individual effects with `#define PALETTE__ENABLE`." #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_GRADIENT_ENABLE) // "Gradient" static effect. This is essentially a palette-colored version of // RGB_MATRIX_GRADIENT_UP_DOWN. A vertically-sloping gradient is made, with the // highest color on the top keys of keyboard and the lowest color at the bottom. static bool PALETTEFX_GRADIENT(effect_params_t* params) { // On first call, compute and cache the slope of the gradient. static uint8_t gradient_slope = 0; if (!gradient_slope) { uint8_t y_max = 64; // To avoid overflow below, x_max must be at least 64. for (uint8_t i = 0; i < RGB_MATRIX_LED_COUNT; ++i) { if (g_led_config.point[i].y > y_max) { y_max = g_led_config.point[i].y; } } // Compute the quotient `255 / y_max` with 6 fractional bits and rounding. gradient_slope = (64 * 255 + y_max / 2) / y_max; } RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); const uint8_t y = g_led_config.point[i].y; const uint8_t value = 255 - (((uint16_t)y * (uint16_t)gradient_slope) >> 6); rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value)); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_FLOW_ENABLE) // "Flow" animated effect. Draws moving wave patterns mimicking the appearance // of flowing liquid. For interesting variety of patterns, space coordinates are // slowly rotated and a function of several sine waves is evaluated. static bool PALETTEFX_FLOW(effect_params_t* params) { RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); const uint16_t time = palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 8); // Compute rotation coefficients with 7 fractional bits. const int8_t rot_c = cos8(time / 4) - 128; const int8_t rot_s = sin8(time / 4) - 128; const uint8_t omega = 32 + sin8(time) / 4; for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); const uint8_t x = g_led_config.point[i].x; const uint8_t y = g_led_config.point[i].y; // Rotate (x, y) by the 2x2 rotation matrix described by rot_c, rot_s. const uint8_t x1 = (uint8_t)((((int16_t)rot_c) * ((int16_t)x)) / 128) - (uint8_t)((((int16_t)rot_s) * ((int16_t)y)) / 128); const uint8_t y1 = (uint8_t)((((int16_t)rot_s) * ((int16_t)x)) / 128) + (uint8_t)((((int16_t)rot_c) * ((int16_t)y)) / 128); uint8_t value = scale8(sin8(x1 - 2 * time), omega) + y1 + time / 4; // Evaluate `sawtooth(value)`. value = 2 * ((value <= 127) ? value : (255 - value)); rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value)); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_RIPPLE_ENABLE) // "Ripple" animated effect. Draws circular rings emanating from random points, // simulating water drops falling in a quiet pool. static bool PALETTEFX_RIPPLE(effect_params_t* params) { RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); // Each instance of this struct represents one water drop. For efficiency, at // most 3 drops are active at any time. static struct { uint16_t time; uint8_t x; uint8_t y; uint8_t amplitude; uint8_t scale; uint8_t phase; } drops[3]; static uint32_t drop_timer = 0; static uint8_t drops_tail = 0; if (params->iter == 0) { if (params->init) { for (uint8_t j = 0; j < 3; ++j) { drops[j].amplitude = 0; } drop_timer = g_rgb_timer; } if (drops[drops_tail].amplitude == 0 && timer_expired32(g_rgb_timer, drop_timer)) { // Spawn a new drop, located at a random LED. const uint8_t i = random8_max(RGB_MATRIX_LED_COUNT); drops[drops_tail].time = (uint16_t)g_rgb_timer; drops[drops_tail].x = g_led_config.point[i].x; drops[drops_tail].y = g_led_config.point[i].y; drops[drops_tail].amplitude = 1; ++drops_tail; if (drops_tail == 3) { drops_tail = 0; } drop_timer = g_rgb_timer + 1000; } uint8_t amplitude(uint8_t t) { // Drop amplitude as a function of time. if (t <= 55) { return (t < 32) ? (3 + 5 * t) : 192; } else { t = (((uint16_t)(255 - t)) * UINT16_C(123)) >> 7; return scale8(t, t); } } for (uint8_t j = 0; j < 3; ++j) { if (drops[j].amplitude == 0) { continue; } const uint16_t tick = scale16by8(g_rgb_timer - drops[j].time, 1 + rgb_matrix_config.speed / 4); if (tick < 4 * 255) { const uint8_t t = (uint8_t)(tick / 4); drops[j].amplitude = amplitude(t); drops[j].scale = 255 / (1 + t / 2); drops[j].phase = (uint8_t)tick; } else { drops[j].amplitude = 0; // Animation for this drop is complete. } } } for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); int16_t value = 128; for (uint8_t j = 0; j < 3; ++j) { if (drops[j].amplitude == 0) { continue; } const uint8_t x = abs8((g_led_config.point[i].x - drops[j].x) / 2); const uint8_t y = abs8((g_led_config.point[i].y - drops[j].y) / 2); const uint8_t r = sqrt16(x * x + y * y); const uint16_t r_scaled = (uint16_t)r * (uint16_t)drops[j].scale; if (r_scaled < 255) { // The drop is made from a radial sine wave modulated by a smooth bump // to localize its spatial extent. const uint8_t bump = scale8(ease8InOutApprox(255 - (uint8_t)r_scaled), drops[j].amplitude); const int8_t wave = (int16_t)cos8(8 * r - drops[j].phase) - 128; value += ((int16_t)wave * (int16_t)bump) / 128; } } // Clip `value` to 0-255 range. if (value < 0) { value = 0; } if (value > 255) { value = 255; } rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, (uint8_t)value)); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_SPARKLE_ENABLE) // "Sparkle" effect. Each LED is animated by a sine wave with pseudorandom // phase, so that the matrix "sparkles." All the LED sines are modulated by a // global amplitude factor, which varies by a slower sine wave, so that the // matrix as a whole periodically brightens and dims. static bool PALETTEFX_SPARKLE(effect_params_t* params) { RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); const uint8_t time = palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 8); const uint8_t amplitude = 128 + sin8(time) / 2; uint16_t rand_state = 1 + params->iter; for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); // Multiplicative congruential generator for a random phase for each LED. rand_state *= UINT16_C(36563); const uint8_t phase = (uint8_t)(rand_state >> 8); const uint8_t value = scale8(sin8(2 * time + phase), amplitude); rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value)); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_VORTEX_ENABLE) // "Vortex" animated effect. LEDs are animated according to a polar function // with the appearance of a spinning vortex centered on k_rgb_matrix_center. static bool PALETTEFX_VORTEX(effect_params_t* params) { RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); const uint16_t time = palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 4); for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); const int16_t x = g_led_config.point[i].x - k_rgb_matrix_center.x; const int16_t y = g_led_config.point[i].y - k_rgb_matrix_center.y; uint8_t value = sin8(atan2_8(y, x) + time - sqrt16(x * x + y * y) / 2); rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value)); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && ( \ defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_REACTIVE_ENABLE)) // Reactive animated effect. This effect is "reactive," it responds to key // presses. For each key press, LEDs near the key change momentarily. static bool PALETTEFX_REACTIVE(effect_params_t* params) { RGB_MATRIX_USE_LIMITS(led_min, led_max); const uint16_t* palette = palettefx_get_palette_data(); const uint8_t count = g_last_hit_tracker.count; uint8_t amplitude(uint8_t t) { // Bump amplitude as a function of time. if (t <= 55) { return (t < 32) ? (4 + 8 * t) : 255; } else { t = (((uint16_t)(255 - t)) * UINT16_C(164)) >> 7; return scale8(t, t); } } uint8_t hit_amplitude[LED_HITS_TO_REMEMBER] = {0}; for (uint8_t j = 0; j < count; ++j) { const uint16_t tick = scale16by8(g_last_hit_tracker.tick[j], 1 + rgb_matrix_config.speed / 4); if (tick <= 255) { hit_amplitude[j] = amplitude((uint8_t)tick); } } for (uint8_t i = led_min; i < led_max; ++i) { RGB_MATRIX_TEST_LED_FLAGS(); uint8_t value = 0; for (uint8_t j = 0; j < count; ++j) { if (hit_amplitude[j] == 0) { continue; } uint8_t dx = abs8((g_led_config.point[i].x - g_last_hit_tracker.x[j]) / 2); uint8_t dy = abs8((g_led_config.point[i].y - g_last_hit_tracker.y[j]) / 2); if (dx < 21 && dy < 21) { const uint16_t dist_sqr = dx * dx + dy * dy; if (dist_sqr < 21 * 21) { // Accumulate a radial bump for each hit. const uint8_t dist = sqrt16(dist_sqr); value = qadd8(value, scale8(255 - 12 * dist, hit_amplitude[j])); // Early loop exit where the value has saturated. if (value == 255) { break; } } } } hsv_t hsv = palettefx_interp_color(palette, value); if (value < 32) { // Make the background dark regardless of palette. hsv.v = scale8(hsv.v, 64 + 6 * value); } const rgb_t rgb = rgb_matrix_hsv_to_rgb(hsv); rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b); } return rgb_matrix_check_finished_leds(led_max); } #endif #endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS #endif // COMMUNITY_MODULE_PALETTEFX_ENABLE