qmk/modules/getreuer/palettefx/palettefx.inc

345 lines
13 KiB
C++

// Copyright 2024-2025 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file palettefx.inc
* @brief PaletteFx community module effects definitions
*
* For full documentation, see
* <https://getreuer.info/posts/keyboards/palettefx>
*/
#ifdef COMMUNITY_MODULE_PALETTEFX_ENABLE
#include "palettefx_default_config.h"
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_GRADIENT_ENABLE)
RGB_MATRIX_EFFECT(PALETTEFX_GRADIENT)
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_FLOW_ENABLE)
RGB_MATRIX_EFFECT(PALETTEFX_FLOW)
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_RIPPLE_ENABLE)
RGB_MATRIX_EFFECT(PALETTEFX_RIPPLE)
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_SPARKLE_ENABLE)
RGB_MATRIX_EFFECT(PALETTEFX_SPARKLE)
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_VORTEX_ENABLE)
RGB_MATRIX_EFFECT(PALETTEFX_VORTEX)
#endif
#if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && ( \
defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_REACTIVE_ENABLE))
RGB_MATRIX_EFFECT(PALETTEFX_REACTIVE)
#endif
#ifdef RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#include "palettefx.h"
#if !(defined(PALETTEFX_ENABLE_ALL_EFFECTS) || \
defined(PALETTEFX_GRADIENT_ENABLE) || \
defined(PALETTEFX_FLOW_ENABLE) || \
defined(PALETTEFX_RIPPLE_ENABLE) || \
defined(PALETTEFX_SPARKLE_ENABLE) || \
defined(PALETTEFX_VORTEX_ENABLE) || \
(defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && \
defined(PALETTEFX_REACTIVE_ENABLE)))
#pragma message \
"palettefx: No palettefx effects are enabled. Enable all effects by adding in config.h `#define PALETTEFX_ENABLE_ALL_EFFECTS`, or enable individual effects with `#define PALETTE_<name>_ENABLE`."
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_GRADIENT_ENABLE)
// "Gradient" static effect. This is essentially a palette-colored version of
// RGB_MATRIX_GRADIENT_UP_DOWN. A vertically-sloping gradient is made, with the
// highest color on the top keys of keyboard and the lowest color at the bottom.
static bool PALETTEFX_GRADIENT(effect_params_t* params) {
// On first call, compute and cache the slope of the gradient.
static uint8_t gradient_slope = 0;
if (!gradient_slope) {
uint8_t y_max = 64; // To avoid overflow below, x_max must be at least 64.
for (uint8_t i = 0; i < RGB_MATRIX_LED_COUNT; ++i) {
if (g_led_config.point[i].y > y_max) {
y_max = g_led_config.point[i].y;
}
}
// Compute the quotient `255 / y_max` with 6 fractional bits and rounding.
gradient_slope = (64 * 255 + y_max / 2) / y_max;
}
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
const uint8_t y = g_led_config.point[i].y;
const uint8_t value = 255 - (((uint16_t)y * (uint16_t)gradient_slope) >> 6);
rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_FLOW_ENABLE)
// "Flow" animated effect. Draws moving wave patterns mimicking the appearance
// of flowing liquid. For interesting variety of patterns, space coordinates are
// slowly rotated and a function of several sine waves is evaluated.
static bool PALETTEFX_FLOW(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
const uint16_t time =
palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 8);
// Compute rotation coefficients with 7 fractional bits.
const int8_t rot_c = cos8(time / 4) - 128;
const int8_t rot_s = sin8(time / 4) - 128;
const uint8_t omega = 32 + sin8(time) / 4;
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
const uint8_t x = g_led_config.point[i].x;
const uint8_t y = g_led_config.point[i].y;
// Rotate (x, y) by the 2x2 rotation matrix described by rot_c, rot_s.
const uint8_t x1 = (uint8_t)((((int16_t)rot_c) * ((int16_t)x)) / 128)
- (uint8_t)((((int16_t)rot_s) * ((int16_t)y)) / 128);
const uint8_t y1 = (uint8_t)((((int16_t)rot_s) * ((int16_t)x)) / 128)
+ (uint8_t)((((int16_t)rot_c) * ((int16_t)y)) / 128);
uint8_t value = scale8(sin8(x1 - 2 * time), omega) + y1 + time / 4;
// Evaluate `sawtooth(value)`.
value = 2 * ((value <= 127) ? value : (255 - value));
rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_RIPPLE_ENABLE)
// "Ripple" animated effect. Draws circular rings emanating from random points,
// simulating water drops falling in a quiet pool.
static bool PALETTEFX_RIPPLE(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
// Each instance of this struct represents one water drop. For efficiency, at
// most 3 drops are active at any time.
static struct {
uint16_t time;
uint8_t x;
uint8_t y;
uint8_t amplitude;
uint8_t scale;
uint8_t phase;
} drops[3];
static uint32_t drop_timer = 0;
static uint8_t drops_tail = 0;
if (params->iter == 0) {
if (params->init) {
for (uint8_t j = 0; j < 3; ++j) {
drops[j].amplitude = 0;
}
drop_timer = g_rgb_timer;
}
if (drops[drops_tail].amplitude == 0 &&
timer_expired32(g_rgb_timer, drop_timer)) {
// Spawn a new drop, located at a random LED.
const uint8_t i = random8_max(RGB_MATRIX_LED_COUNT);
drops[drops_tail].time = (uint16_t)g_rgb_timer;
drops[drops_tail].x = g_led_config.point[i].x;
drops[drops_tail].y = g_led_config.point[i].y;
drops[drops_tail].amplitude = 1;
++drops_tail;
if (drops_tail == 3) { drops_tail = 0; }
drop_timer = g_rgb_timer + 1000;
}
uint8_t amplitude(uint8_t t) { // Drop amplitude as a function of time.
if (t <= 55) {
return (t < 32) ? (3 + 5 * t) : 192;
} else {
t = (((uint16_t)(255 - t)) * UINT16_C(123)) >> 7;
return scale8(t, t);
}
}
for (uint8_t j = 0; j < 3; ++j) {
if (drops[j].amplitude == 0) { continue; }
const uint16_t tick = scale16by8(g_rgb_timer - drops[j].time,
1 + rgb_matrix_config.speed / 4);
if (tick < 4 * 255) {
const uint8_t t = (uint8_t)(tick / 4);
drops[j].amplitude = amplitude(t);
drops[j].scale = 255 / (1 + t / 2);
drops[j].phase = (uint8_t)tick;
} else {
drops[j].amplitude = 0; // Animation for this drop is complete.
}
}
}
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
int16_t value = 128;
for (uint8_t j = 0; j < 3; ++j) {
if (drops[j].amplitude == 0) { continue; }
const uint8_t x = abs8((g_led_config.point[i].x - drops[j].x) / 2);
const uint8_t y = abs8((g_led_config.point[i].y - drops[j].y) / 2);
const uint8_t r = sqrt16(x * x + y * y);
const uint16_t r_scaled = (uint16_t)r * (uint16_t)drops[j].scale;
if (r_scaled < 255) {
// The drop is made from a radial sine wave modulated by a smooth bump
// to localize its spatial extent.
const uint8_t bump = scale8(ease8InOutApprox(255 - (uint8_t)r_scaled),
drops[j].amplitude);
const int8_t wave = (int16_t)cos8(8 * r - drops[j].phase) - 128;
value += ((int16_t)wave * (int16_t)bump) / 128;
}
}
// Clip `value` to 0-255 range.
if (value < 0) { value = 0; }
if (value > 255) { value = 255; }
rgb_t rgb =
rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, (uint8_t)value));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_SPARKLE_ENABLE)
// "Sparkle" effect. Each LED is animated by a sine wave with pseudorandom
// phase, so that the matrix "sparkles." All the LED sines are modulated by a
// global amplitude factor, which varies by a slower sine wave, so that the
// matrix as a whole periodically brightens and dims.
static bool PALETTEFX_SPARKLE(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
const uint8_t time =
palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 8);
const uint8_t amplitude = 128 + sin8(time) / 2;
uint16_t rand_state = 1 + params->iter;
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
// Multiplicative congruential generator for a random phase for each LED.
rand_state *= UINT16_C(36563);
const uint8_t phase = (uint8_t)(rand_state >> 8);
const uint8_t value = scale8(sin8(2 * time + phase), amplitude);
rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#if defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_VORTEX_ENABLE)
// "Vortex" animated effect. LEDs are animated according to a polar function
// with the appearance of a spinning vortex centered on k_rgb_matrix_center.
static bool PALETTEFX_VORTEX(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
const uint16_t time =
palettefx_scaled_time(g_rgb_timer, 1 + rgb_matrix_config.speed / 4);
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
const int16_t x = g_led_config.point[i].x - k_rgb_matrix_center.x;
const int16_t y = g_led_config.point[i].y - k_rgb_matrix_center.y;
uint8_t value = sin8(atan2_8(y, x) + time - sqrt16(x * x + y * y) / 2);
rgb_t rgb = rgb_matrix_hsv_to_rgb(palettefx_interp_color(palette, value));
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) && ( \
defined(PALETTEFX_ENABLE_ALL_EFFECTS) || defined(PALETTEFX_REACTIVE_ENABLE))
// Reactive animated effect. This effect is "reactive," it responds to key
// presses. For each key press, LEDs near the key change momentarily.
static bool PALETTEFX_REACTIVE(effect_params_t* params) {
RGB_MATRIX_USE_LIMITS(led_min, led_max);
const uint16_t* palette = palettefx_get_palette_data();
const uint8_t count = g_last_hit_tracker.count;
uint8_t amplitude(uint8_t t) { // Bump amplitude as a function of time.
if (t <= 55) {
return (t < 32) ? (4 + 8 * t) : 255;
} else {
t = (((uint16_t)(255 - t)) * UINT16_C(164)) >> 7;
return scale8(t, t);
}
}
uint8_t hit_amplitude[LED_HITS_TO_REMEMBER] = {0};
for (uint8_t j = 0; j < count; ++j) {
const uint16_t tick = scale16by8(g_last_hit_tracker.tick[j],
1 + rgb_matrix_config.speed / 4);
if (tick <= 255) {
hit_amplitude[j] = amplitude((uint8_t)tick);
}
}
for (uint8_t i = led_min; i < led_max; ++i) {
RGB_MATRIX_TEST_LED_FLAGS();
uint8_t value = 0;
for (uint8_t j = 0; j < count; ++j) {
if (hit_amplitude[j] == 0) { continue; }
uint8_t dx = abs8((g_led_config.point[i].x - g_last_hit_tracker.x[j]) / 2);
uint8_t dy = abs8((g_led_config.point[i].y - g_last_hit_tracker.y[j]) / 2);
if (dx < 21 && dy < 21) {
const uint16_t dist_sqr = dx * dx + dy * dy;
if (dist_sqr < 21 * 21) { // Accumulate a radial bump for each hit.
const uint8_t dist = sqrt16(dist_sqr);
value = qadd8(value, scale8(255 - 12 * dist, hit_amplitude[j]));
// Early loop exit where the value has saturated.
if (value == 255) { break; }
}
}
}
hsv_t hsv = palettefx_interp_color(palette, value);
if (value < 32) { // Make the background dark regardless of palette.
hsv.v = scale8(hsv.v, 64 + 6 * value);
}
const rgb_t rgb = rgb_matrix_hsv_to_rgb(hsv);
rgb_matrix_set_color(i, rgb.r, rgb.g, rgb.b);
}
return rgb_matrix_check_finished_leds(led_max);
}
#endif
#endif // RGB_MATRIX_CUSTOM_EFFECT_IMPLS
#endif // COMMUNITY_MODULE_PALETTEFX_ENABLE